Survival Analysis

Michael Proschan, Ph.D.

Mathematical Statistician

National Heart, Lung, and Blood
Institute

Outline

- Kaplan-Meier curve
- Logrank test
- Hazard function and Cox proportional hazards regression

- Suppose have behavioral treatment for drug abuse
- At least two possible outcomes:
 - relapse within 2 years (yes/no)
 - time to relapse
- From power standpoint, using time better (almost everyone relapses by 2 years)
- If use relapse within 2 years, what do with participant who moves after 1?

- Problem with using time to relapse: What if no relapse by 2 years?
- Only know that time to relapse at least 2 years; called censored observation
- Participant moving after 6 months & hasn't relapsed also censored observation
- Typical trial has censoring and differential followup:

Typical Time to Event Trial

- Have to make assumption that reason for disappearance unrelated to event time; non-informative censoring
- Examples where censoring likely to be noninformative in drug abuse trial:
 - Participant moved because company moved
 - Participant killed by lightning
 - Administrative censoring (trial ended)

- Examples where censoring likely to be informative:
 - Participant jailed for DUI, so couldn't come to remaining urine tests
 - Participant refused to take remaining urine tests
 - Participant dropped out of sight

• Example: 2-year study with 11 patients, 5 censored (+):

- P("survive" .8 years)=10/11
- P("survive" 1 year given "survive" .8)=10/10=1
- P("survive" 1.2 years given "survive" 1)=8/9
- P("survive" 1.3 years given "survive" 1.2)=6/8
- P("survive" 1.4 years given "survive" 1.3)=5/6
- P("survive" 1.8 years given "survive" 1.4)=4/5
- P("survive" 2 years given "survive" 1.8)=4/4=1

Kaplan-Meier Survival Curve

Time Since Randomization (Years)

- Survival curve steps down at each event time
- At beginning of study, steps are small because many people at risk; e.g., with 1000 people at risk, step size at first event=1/1000
- Later, patients have event or censored; fewer at risk & each event is bigger drop in curve
- Don't be fooled by results toward end when few people at risk

Comparing Two Survival Curves

 Small example: Relapse trial with only 4 people/arm (obviously unrealistic):

Put data all together and order (bold=treatment):

<u>death</u> <u>P(T)</u>

.5 .75+ **1.5** 2.0 2.0+ **2.0**+ **2.0**+ **2.0**+ **1**st 4/8

.5 .75+ **1.5** 2.0 2.0+ **2.0**+ **2.0**+ **2.0**+ 2nd 4/6

.5 .75+ **1.5** | 2.0 2.0+ **2.0**+ **2.0**+ **2.0**+ 3rd 3/5

Example (continued)

Event (only first event/person)	P(event was in treatment arm)	# events in treatment arm
1 st	4/8=.500	0
2 nd	4/6=.667	1
3 rd	3/5=.600	0
Total	1.767 (E)	1 (O)

- O-E=1-1.767=-.767
- Can show that under null hypothesis,
- V=(4/8)(1-4/8)+(4/6)(1-4/6)+(3/5)(1-3/5)=.712
- Std deviation=(.712)1/2=.844
- Z=-.767/.844=-.909
- If had more people & events, could refer Z to standard normal distribution to find pvalue

 Logrank test more powerful than test of proportions even if no censoring, provided that proportional hazards assumption is met

The hazard rate at time t is

 $\lambda(t)$ =P{event in tiny interval (t,t+ Δ) given survive t}/ Δ

=event rate per ∆ (tiny) years for people who survive (have no event up to) time t

 E.g., observe 1,000,000 people who survive 1 year after bypass; If 12 die between 1 year and 1.01 years, estimated hazard rate at 1 year is

$$\lambda(1)=(12/1,000,000)/(.01 \text{ years})$$

=.0012/year

- λ(t) may increase with t; e.g., mortality in 75-year-olds; at end of 5 year trial (t=5), patient is 80, so P(die in (5, 5+Δ) given alive at 5)>P(die in (0, 0+Δ) given alive at 0)
- λ(t) may stay roughly same; e.g., mortality in 30-year-old healthy people; only die by catastrophe so P(die in (5, 5+Δ) given alive at 5) ≈P(die in (0, 0+Δ) given alive at 0)
- λ(t) may decrease with t; e.g., rejection of new heart;
 P(reject in (5,5+Δ) given haven't by 5) < P(reject in (0,0+Δ) given haven't by 0)
- λ(t) may increase for some t and decrease for other t

- Now consider $\lambda_T(t)/\lambda_C(t)$, the ratio of hazard rates in treatment & control patients
- When null hypothesis is true, hazard ratio is 1
- If treatment is effective, hazard ratio is <1, but may vary depending on t
- E.g., hazard ratio may be ½ (treatment reduces hazard by 50%) at 1 year and ¾ (treatment reduces hazard by 25%) at 2 years

- If hazard ratio is same for all t, called
- proportional hazards
- Can be shown that logrank is best test if have proportional hazards
- Don't always have proportional hazards
- In fact, sometimes survival functions cross

 E.g., the Heart and Estrogen/progestin Replacement Study (HERS) (*JAMA* 1998; 280, 605-613) to see if HRT reduces coronary heart disease deaths/nonfatal heart attacks

- Why did survival curves cross?
 - May be chance
 - May be that treatment is initially harmful, but beneficial in long run
 - May be that treatment is initially harmful, killing off sick patients in treatment arm; since only healthy ones remain, later it looks like treatment is helping
- Last one especially big concern if small trial
- HERS not small

Can adjust for baseline covariates just as in ANCOVA and logistic regression

Suppose X=centered age

=age-average

so X=0 means participant is average age

Denote hazard function for control patient of average age (X=0) by $\lambda_0(t)$

Cox model: Participant with centered age x has hazard

$$log{λ(t)}-log{λ0(t)}=βx (Control)=θ+βx (Treatment)$$

- "Baseline" hazard λ₀(t) could be anything; only assuming linear discrepancy
- Still, implies $\lambda_T(t)/\lambda_C(t)$ doesn't depend on age

- As with ANCOVA and logistic regression, can have several covariates, some continuous, others categorical
- Same covariate selection advice applies as in ANCOVA and logistic regression
- When only include treatment variable, essentially reduces to logrank test

 Note analogy with logistic regression: Log(odds)= α_C+βx (Control) Log(odds)= α_T+βx (Treatment)

```
Rewrite with \theta = \alpha_T - \alpha_C

\log\{odds\} - \log\{odds_0\} = \beta x (Control)

\theta + \beta x (Treatment)
```

$$log{λ(t)}-log{λ0(t)}=βx$$
 (Control)

$$θ+βx$$
 (Treatment)

Summary

- Survival methods useful for any time to event (death, relapse, etc.) data
 - Kaplan-Meier curve to estimate survival
 - Logrank test to compare two survival curves
- Handle non-informatively censored data
 - e.g., censored because trial ended (administrative censoring)
 - Not valid if patient quit because treatment was failing!

Summary (continued)

- Hazard λ(t) is event rate in next tiny interval given you survived to time t
- Hazard ratio is $\lambda_T(t)/\lambda_C(t)$
 - Analogous to relative risk or odds ratio
 - Proportional hazards means hazard ratio is same for all t
 - If proportional hazards, logrank is best test
- Can also adjust for covariates (Cox model)

Summary (Continued)

	Dichotomous Outcome	Survival Outcome
No Covariate Adjustment	Test of Proportions	Logrank Statistic
Covariate Adjustment	Logistic Regression	Cox Proportional Hazards Model
Treatment Effect	Odds Ratio Odds _T /Odds _C	Hazard Ratio λ_T / λ_C